In our last post, we raised the question: “Will an intelligent machine ever be able to completely replicate a human mind?” Let’s now address it.

Experts disagree. Some experts—such as English mathematical physicist, recreational mathematician, and philosopher Roger Penrose—argue there is a limit as to what intelligent machines can do. Most experts, however, including Ray Kurzweil, argue that it will eventually be technologically feasible to copy the brain directly into an intelligent machine and that such a simulation will be identical to the original. The implication is that the intelligent machine will be a mind and be self-aware.

This begs one big question: “When will the intelligent machines become self-aware?”

A generally accepted definition is that a person is conscious if that person is aware of his or her surroundings. If you are self-aware, it means you are self-conscious. In other words you are aware of yourself as an individual or of your own being, actions, and thoughts. To understand this concept, let us start by exploring how the human brain processes consciousness. To the best of our current understanding, no one part of the brain is responsible for consciousness. In fact neuroscience (the scientific study of the nervous system) hypothesizes that consciousness is the result of the interoperation of various parts of the brain called “neural correlates of consciousness” (NCC). This idea suggests that at this time we do not completely understand how the human brain processes consciousness or becomes self-aware.

Is it possible for a machine to be self-conscious? Obviously, since we do not completely understand how the human brain processes consciousness to become self-aware, it is difficult to definitively argue that a machine can become self-conscious or obtain what is termed “artificial consciousness” (AC). This is why AI experts differ on this subject. Some AI experts (proponents) argue it is possible to build a machine with AC that emulates the interoperation (i.e., it works like the human brain) of the NCC. Opponents argue that it is not possible because we do not fully understand the NCC. To my mind they are both correct. It is not possible today to build a machine with a level of AC that emulates the self-consciousness of the human brain. However, I believe that in the future we will understand the human brain’s NCC interoperation and build a machine that emulates it. Nevertheless this topic is hotly debated.

Opponents argue that many physical differences exist between natural, organic systems and artificially constructed (e.g., computer) systems that preclude AC. The most vocal critic who holds this view is American philosopher Ned Block (1942– ), who argues that a system with the same functional states as a human is not necessarily conscious.

The most vocal proponent who argues that AC is plausible is Australian philosopher David Chalmers (1966– ). In his unpublished 1993 manuscript “A Computational Foundation for the Study of Cognition,” Chalmers argues that it is possible for computers to perform the right kinds of computations that would result in a conscious mind. He reasons that computers perform computations that can capture other systems’ abstract causal organization. Mental properties are abstract causal organization. Therefore computers that run the right kind of computations will become conscious.

Source:  The Artificial Intelligence Revolution (2014), Louis A. Del Monte